
Annex AppleTalk Overview
UNIX host

Daemons:
- erpcd - Annex boot service, etc . .
~agated?

- CAP/other AppleTalk file/print server
Configuration:
- na - Annex ROM conf utility TBD: AT conf
- acp - Access Control Protocol (will PPP

support interface to acp?) TBD: AT net #, zone
Utilities:
- acda - Annex Core Dump Analyzer
- TBD: SUN/376 cross-compiler

Console: printf debugging

LaserWriter

AppleTalk Phase II
Seed Router

TBD: Macintosh server?

AppleTalk socket? MacTCP?
- essential erpcd services

Configuration:
- na (acp configuration)

VT100 - ANSI X3.64
compatible terminal

Remote
Macintosh/
Router

•
PPP Packet Driver? ODI?
TN support? ???

TBD: PPP -> AppleTalk LAP (Network Control Panel adev code resource)
PPP -> vJ-TCP -> MacTCP Link Layer; Comm Toolbox support?

A shared PPP interface with same user interface for all interfaces is desirable.
SLAT: Liasion or Apple Remote Link Protocol interface? ???

Routing support: Mac+ bridge? Liasion? Apple? Req'd for convenient remote ATaik Laser printing.

E
T
H
E
R
N
E
T

Mac

Mac

Mac
File
server

databeast
Sticky Note
These are among the documents I authored as an employee of Cornell University working in the Network Planning and Development group of the Cornell Computing Services department.

I was THE designated Macintosh TCP/IP networking expert… at an institution where the Macintosh had been selected early on as a standard for ALL users, and purchases of IBM PC and its variants discouraged.

Sincerely,
Bonze Anne Rose Blayk

f/k/a "Kevin Eric Saunders a/k/a bonze blayk"

Community Access Project
Network Resourcesffechnologies & Standards

Project Summary:

The goal of the Community Access Project is to allow remote access via telephone
to networks connected to the Cornell backbone which employ the AppleTalk and TCPIIP
protocol stacks. Recent reductions in the cost of V 32 standard 9600-baud modems make
it possible to provide an economical high speed dial-up service which can run overhead
laden network protocols with acceptable performance. Combined with recent advances in
modem-based data compression and TCPIIP header compression, V32 technology allows
high-performance tenninal emulation, downloading, and mail service, and low
performance file-sharing to be extended beyond the reach of the Cornell campus wire plant.

To accomplish this goal, we propose to enhance Cornell's PC TN, PC C-Gateway,
and Macintosh OmniTalklBridge to support modem links, and to develop a SUP (Serial
Line Internet Protocol) driver for Apple's MacTCP. Building on the C-Gateway platform
to develop the CAP-gateway will allow us to provide security and accounting facilities
which will allow CIT to levy charges on users of these telecommunication services.

Project Phases:

Phase I Serial Line Internet Protocol (RFC lOSS) support.
Products Basic SUP support to enable fruitful access to hosts on the Cornell

network.
A: Test existing SLIPs: CMU PC-IP Telnet, KA9Q IP router (1/1/90).
B: Implement SUP driver for MacTCP (MacSLIP, 1/30/90).
C: Implement SUP/SLAP driver for C-Gateway (CAP-Gateway, 3130/90).
0: Implement SLAP driver for Cornell OmniTalklMacBridge (MacSLAP,

Phase II SLIP header compression.
Product Compressed SUP support to improve performance with ASCII hosts.

A: Implement for MacTCP and CAP-Gateway (4131/90).

Phase III Expanded services.
A: Test Point-to-Point Protocol (draft RFC) implementations (KA9Q).
B: Choose PPP or alternative algorithm for supporting multiple protocols.
C: Implement multiple protocol support for MacTCP and CAP-Gateway

(5131190).
C: Design Access Control and Accounting Interface (2 weeks).
0: Implement Access Control & Accounting on CAP-Gateway and

Community Access Control Server (.

Summary of Direct Costs:

Software Development System (DOS under UNIX)
Development Testbeds and Hardware
Modems

Total:

5,350.00
9,600.00
6.470.00

$21,420.00

Itemized Budget for Direct Costs
The direct costs of equipment, software, and services required to conduct this

project are estimated as follows:

(opt)
(opt)

Software Development System (DOS under UNIX);

Informtech 386 (25MHz)
4MB memory
Imprimis 320MB disk
we Ethernet card
VGA graphics adapter
monochrome monitor
SCO Open Desktop

(includes UNIX SVr3,

1
4 250.00
1
1
1
1
1

DOS, TCP/IP, X-windows)

1,200.00
1,000.00
2,100.00

300.00
100.00
150.00
500.00

Workbench total: 5,350.00

Development Testbeds and Hardware

Informtech 286
(1 for C-Gateway,

Pronet adapter
Serial I/O adapters
Serial data scope
analog phone lines

2
1 for PC Telnet)

1
4
1
2

800.00

1,000.00

250.00

1,600.00

500.00
4,000.00
3,000.00

500.00

Testbed total: 9,600.00

Modems

V.32/MNP5 modems (prometheus) 4 650.00 2,600.00
V.32/MNPS modems (Racal-Vadic) 2 835.00 1,670.00
V.32/MNP5 modems (Racal-Vadic) 2 1100.00 2,200.00
V.32/MNP9 modems (Microcom) 2 1100.00
V.32/PEP modems (Telebit) 2 900.00

Modem total: 6,470.00

Grand Total $21,420.00

Phase I:
Products:

A · .
(J/l/90).

B.·

C· .

D:

Phase II:
Product:

A:

Phase III:
A:
C:
D:

Description of Project Phases

Serial Line Internet Protocol (REC 1055) sUlWOrt.
Basic SLIP/SlAP support to enable high-performance access to hosts on
the Cornell network: Telnet on the Mac & PC, AppleTalk on the Mac.
Test existing SUPs: UNIX. CMU PC-IP Telnet. KA9Q IP router

Several implementations of SUP on the PC are freely available for non
commercial use. To ensure compatibility of the CAP server, we need to
configure some of these platforms for testing.
Implement SLIP driver for MacTCP (J/30/90 L
The MacTCP Control Panel device allows the user to reconfigure to use
alternate network drivers. Apple MacTCP developer John Veizades has
agreed to share the interface specification so that we can develop a SUP
driver for MacTCP. This will allow mUltiple TCP/IP services on a single
remote workstation using a manually assigned address.
Implement SLIPISLAP driver for MfEXlC-GatewtlJ? (3/30/90).
The Cornell C-Gateway has been developed internally as a secure, low
cost, median performance router for IP and AppleTalk. Configured with
intelligent serial port boards, the C-Gateway could easily handle 16-32
modem connections at a time. This driver will allow the C-Gateway to
provide basic SUP or SLAP connectivity to the Cornell network.
Implement SLAP driver for Cornell OmniTalklMacBridae
Modify the OmniTaik Bridge to function as an AppleTalk SLAP driver.
(requires implementation of AARP address acqusition if multiple nodes/net

on gateway.)

SUP header compression (forthcomina van Jacobson RFC>'
Compressed SUP support to improve performance with ASCII hosts.
Implement for MacTCP and CAP-Gateway (4131/90).

&panded services.
Test Point-to;Point Protocol (draft REC) implementations (KA9Q>.
DesifW. Access Control and Accounting Interface (2 weeks>.
Implement Access Control & Accountina on CAP-Gateway &
Community Access Control Server.

Issues Associated with Dialup Network Service

Address assignment and security:

The remote user must be interactively assigned a network address in order to avoid
address collisions.

The remote user may want the option of negotiating a high-security AppleTalk
network address through a service such as Kerberos. The gateway would draw on a
database server on the backbone to verify the user's identity and get the net number the user
has requested. N.B.: This service would consume AppleTalk net space rapidly.

Performance:

The current generation of modem technology is typified by 9600-baud full-duplex
V.32 modem, with optional protocols at the link layer which work either to enhance
reliability by providing error detection and retransmission of suspect data (MNPI-4,
CCITT V.42) or to speed transmission by compressing the data.

Data compression (e.g. MNP5, V.42bis (?)) performed by the modem degrades
response time for small network packets, while dramatically improving throughput for
larger volumes of data which are comprised of ASOI text.

Interactive terminal services require fast response times. ASCII terminal
performance in particular suffers badly due to network protocol overhead and compression
misfires. IBM 3270 terminals should perform better, since they provide for local editing of
data which is transmitted only at the user's request and only when it has been modified. In
order to improve the interactive performance of TCPIIP, Van Jacobsen and others have
done research on reducing the size of the TCPIIP header from 40 bytes down to about 6-8
bytes; an RFC (Request for Comments, as Internet protocol specifications are titled) is
somewhat over-due from Van Jacobsen on his compression algorithms.

Reliability:

Integrity of transmitted data. TCPIIP provides a ones-complement checksum for a
minimal test of end-to-end data integrity; MNPI-4 or LAP-D ensure modem link layer data
integrity. AppleTalk may also use a 16-bit ones complement checksum.

Gateway reliability.

Line reliability. The quality of local telephone connections will be poor for some
time to come.

Upgradability:

The platform should support higher-speed serial interfaces, e.g. 56Kb/s, which
may be supported in the envisionable future by ISDN switches, and 38.4Kb/s, which is
now supported by high-speed modems from Microcom and USR (the $1100 Microcom
QX1V.32c modem with MNPI-9 reportedly achieves throughput as high as 3100 cps for
ASCII text; the COTT V.42bis specification, which several modem vendors will soon
implement, uses the Lempel-Ziv compression algorithm and should provide yet higher
throughput).

0/1/00

Serial Line Link Layer Protocols

SLIP (Serial Line Internet Protocol)

A very simple protocol, which frames a packet and does nothing else.

Drawbacks:

Fixed IP address. No standard scheme for negotiating IP addresses.
Link transmission errors must be detected and corrected at TCP or other higher

protocol level.

SLAP <Serial Line A.ppleTalk Protocol)

Relatively simple; the framing is the same as SLIP.
AppleTalk services work transparently with willing AppleTalk networks.
TCP/IP address assignment will work automatically as it does on an AppleTalk.

Drawbacks:

Error recovery, as with SLIP.
AppleTalk packet overhead: AppleTalk packets use a 8-byte header for its lAP

(link layer, 3 bytes) and short DDP (network layer, 5 bytes) encapsulation
for AppleTalk packet which destined for a node on the local network (in this
case the CAP-Gateway), which would be added to the 4O-byte minimum
length of a TCP packet if one uses TCPIIP services over AppleTalk.

TCPIIP header compression may not achieve its goal of reducing the a packet with a
single byte of data (the typical ASCII terminal interaction) size below the
threshold at which modem compression schemes begin to add overhead, as
they attempt to compress packet headers--which do not compress well at all.

PPP ahe Point-to-Point Protocol)

An Internet RFC will be released for PPP, which is intended to provide a standard
for transmitting multiple protocols over dial-up connections.

A flexible option structure is provided. Options are included in the draft to
negotiate IP addresses and select data compression techniques.

PPP offers negotiated character mapping to appease picky links.
Several vendors intend to provide PPP on dialup platforms, and UCDavis is

developing PPP functionality on the KA9Q TelnetiRouter base, which
already supports SLIP.

Drawbacks:

PPP packet overhead: PPP specifies the use of synchronous framing based on
HDLC on asynchronous links, which adds an 8-byte header with a 16-bit
CRC checksum. You can negotatiate a minimum header size of 5 bytes
sans CRC. As with AppleTalk, this may impair TCPIIP header
compression performance.

Complexity: PPP is substantially more complex than SLIP/SlAP, since it strives
to provide general solutions for a broad base of applications (e.g.
connections over X.25 links).

0/1/00

' i

NOTES ON THE OMNITALK WORKSTATION/BRIDGE CODE

There are a number of factors which have affected the final form of the system.

PURE WORKSTATION CASE:

The Omninet driver for the Macintosh does not perform d6"uble-buffering, so the AppleTaik LAP
code must return ASAP to the Omninet driver so it can get another buffer and set up another receive on the
Omninet card. In the case where the driver is handling large packets, several retries are common; with
bursts of small packets, more than ten retries are often necessary, so the driver sends the packet three times
if necessary.

Synchronicity: Unfortunately many calls to the AppleTaik driver are made synchronously, so
upcalls to the AppleTaik stack cannot rely on obtaining cycles from a driver (such as the .bridgeDA)
running in "normal" time but must instead perform the upcalls synchronously from interrupt level. Due to
the problem mentioned above, we therefore use the millisecond timer to trigger the upcall.

Memory: Apple has had several conflicting (and confusing) approaches to allocating memory for
drivers, and the technique used by the Omninet driver does not work for an Alternate AppleTaik
implementation. At Alternate LAP install time, which occurs early in the Startup process before INITS are
called, memory in the System Heap is limited, so the 'CVIT' resource is truncated so the system will fit.
Unfortunately this resource includes the timer for OmniDrive services, so the current version does not
support OmniDri ves.

PURE BRIDGE CASE:

In the bridge case the forwarding of packets is performed during "normal" time by getting cycles
from the .bridgeDA. Forwarding of packets at interrupt time leads to failure. Alas, some Mac applications,
notably the Finder, are less than generous when providing driver cycles through calls to SystemTask,
slowing bridge performance. (The "race" application demonstmtes the effect-the MPW Shell also shares
cycles properly.)

Memory: The bridge requires numerous buffers, so the following solution was worked out: at
Install time, the OmniTalk code defers memory allocation, instead opening the .bridgeDA driver and calling
it with pointers to routines to initialize OmniTaik and service its queues. Later, at INIT time, the System
calls the 'OmniINIT' INIT, which contains an 'sysz' resource which causes the System to expand the
System Heap, and which then calls the .bridgeDA to complete the initialization of OmniTalk.

MIXED WORKST ATION/BRIDGE CASE:

This case adds another complication: NBP calls often need to be performed synchronously,
producing two broadcast packets from the bridge in the case where the Zone names are identical, yet the
AppleTaik .MPP driver is not re-entrant. This case has been handled for the Mac+ by patching the .MPP
variable containing the WDS, but this has not been fixed for the MacSElIIIetc. This requires obtaining the
.MPP version # and the corresponding location of the stored WDS for each version.

Components and functions:

.bridgeDA:

!OmniINIT:

OmniTaik resource code:

a driver which is called to initialize OmniTalk and which calls queue
service routines in OmniTalk
an INIT which obtains memory on the System Heap and then calls .bridgeDA to
cause the remainder of the OmniTaik installation process to be performed

omniadev.a:
omniatlk.a:

bridge.c:
bridgeintf.c:

interfaces to LAP Mgr. Network Chooser interface so user can select OmniTalk
contains code which sends and receives packets for LAP mgr.
along with code which interfaces to the C language bridge code

code for the bridging functions
code which interfaces bridge to omniatlk routines

Additional code required to make DA & INIT:

bridgeDA.c:
bridgeinit.a:

Trivial application:

race.c

Header files:

lapmgrequ.a
omni.equ
bridge.h

code for the DA which co-ordinates startup & shares cycles for bridge functions.
code for the INIT resource which acquires System Heap memory & triggers
startup.

shares cycles liberally with DA's.

equates needed by LAP Mgr.
equates for omnitalk

bridge declarations

Corvus OmniDriver/PrD resources:

'Corvus Modem Port'
modPfD
'omnidriver+'

'small macspie'

Makefiles. resource files, etc.

bridgeDA.DRVR
bridgeDA.DRVW
bridgeDA.make
bridgeDA.r
bridgeinit.make
bridgeinit.r
bridgeinit.rsrc
bridgeoff.rsrc
bridgeon.rsrc
makefile
omniatlk.map
OmniTalk
OmniTalk.r
omnitalk.rsrc
race.make
worksheet

Documents:

contains modified PrO, MacSpie. & OmniDriver resources
.PrD patched to avoid ID conflict with QuickMail
modified OmniDriver (handles completion calls correctly)-source in
OmniDriver folder (unchanged from the previous OmniTalk version)
stub Macspie to fit into MacH --eliminates VBL timer code needed to do
ConstellationIII

intermediate file
intermediate file

bridge configuration resource included in Omnitalk.r to set bridge off
bridge configuration resource included in Omnitalk.r to set bridge on

makefile for OmniTalk
map of variables in Omnitalk code
resource to be placed in System Folder

MPW worksheet to compile code (compiled under MPW 2.0.2)

'Omninet Installation Notes'
'OmniTalk design desiderata.W'
'OmniTalk ARP'

describes installation procedure for OmniTalk
this document.

describes AppleTalk address resolution under
OmniTalk

Assorted bugs:

The Omninet driver should be fixed so that it allocates memory and initializes only on the first
open. so OmniTalk does not rely on a fixed ID (31--changed to avoid conflict with the
MacroMaker OA).

Three driver slots are used (.bridgeOA, .Omnidriver, .PrO) where one should suffice.

OMNITALK ADDRESS RESOLUTION PROTOCOL
Address mapping from AppleTalk protocol addresses to Omninet hardware addresses

CIT Network Planning and Development

The following document describes the recommended method for acquiring an AppleTalk address
dynamically on an Omninet network. Implementors of AppleTalk LAP layers on Omninet should adhere to
this standard in order to guarantee compatibility.

At the time a host initializes an Omninet transporter to serve as an AppleTalk node, the host
software should ftrst attempt to use the current switch settings on the transporter as its node number. As is
now the case, the transporter should use Echo Protocol to ensure the uniqueness of this address. If there is
another transporter with the same address, the host software should set the transporter address to another
value using the Poke command, and once again attempt to conftrm its uniqueness using Echo Protocol.
The host software should continue attempting to discover an address until it discovers that all available
addresses are in use, in which case it should report the error condition to the user.

When a network node chooses a LocalTalk address, the client software on a Macintosh can indicate
to the AppleTalk Manager that it wishes to acquire a "server address" (128-254) rather than a "workstation
address" (1-127). The LocalTalk LAP layer then performs a more thorough address-conflict test (sending
some 4500 ENQ packets over 8 seconds, rather than some 600 ENQ packets over 1 second).

The Ornninet Echo Protocol offers a superior alternative to the use of AARP probe packets (as
defmed in the Apple EtherTalk and Alternate AppleTalk Reference), since an initialized transporter is almost
always prepared to respond to an Echo packet without host intervention. Furthermore, there is no need for
AARP-like address resolution on Ornninet because Omninet transporters only recognize 64 addresses on a
network: since any AppleTalk address (except the broadcast address, 255) can be mapped into the Ornninet
address space by masking it with $3F, the Ornninet local address space is a tidy subset of the AppleTalk
local address space.

Therefore, when the client software requests an address, we can use our Ornninet hardware address
to determine the AppleTalk protocol address. If the client requests a workstation address, we simply use the
transporter address. If the client requests a server address, we add 128 to the transporter address to honor that
request. Only one node on an OrnniTalk network requires two distinct protocol addresses: the Macintosh
based AppleTalk bridge. This bridge should acquire a server address to guarantee address uniqueness on the
LocalTalk side; it can choose its bridge protocol address by adding 64 to the server address already selected
for the shared protocol address used by the LocalTalk bridge and workstation elements of the system. Note
that there does exist one restriction in this scheme: the bridge transporter address cannot be 63, since this
would cause a conflict with the AppleTalk broadcast address.

Algorithms:

App leTalk protoco l a ddre ss determination:
Wo r kst a t i on_ address Omninet_address < 63 ;
Server a ddress Omninet address + 128 ; -
Bridge_addr ess Omn i net addr ess + 1 92 ;

Pa c ket f orwarding at the LAP laye r :
Omn i net address Appl eTalk_ p r otocol_address & Ox3f ;

Packet reception:
if (App l e Talk_protocol_address

do_bridge_ forward() ;
do_AppleTalk_upcall() ;

255) {

else if (AppleTalk_protocol_ address >= 192)
do_bridge_ forward() ;

else

Notes on OmniTalk, an Alternate AppleTalk implentation
on Corvus Omninet . . .

OmniTalk: has 3 components:

• OmniTalk: place in System Folder: an 'adev' resource for the 'Network' 'cdev'
Control Panel device. The 'BRDG' and 'STR 'resources in this file control configuration
of the OmniTalk: system. The formats are as follows:

BRDG format:

WORD: Enable bridge operation; if non-zero, the workstation will be
configured as a bridge between the attached Omninet and LocalTalk
networks. Currently the bridge only runs on a Mac+.

WORD: Omninet AppleTalk net number. Unused if not configured as a
bridge.

WORD: LocalTalk: AppleTalk net number. Unused if not configured as a
bridge.

WORD: Number of buffers to allocate for the OmniTalk: system.

STRformat:

STR
STR

1
2

is the name of the LocalTalk Zone;
is the name of the OmniTalk Zone;

• !OmniINIT: place in System Folder: an 'INIT' resource which handles memory
allocation for the OmniTalk system. By modifying the 'sysz' resource (a long number, 4
bytes) in !OmniINIT one can change the size of the System Heap; if you wish to
dramatically increase the number of buffers, you should increase 'sysz'.

• .bridgeDA: install System File using ResEdit: a 'DRVR' resource which gets
CPU time from the System so bridge I/O can be performed in normal processing time
rather than at interrupt time.

Unfortunately the system currently requires 3 driver slots for its operation, and two
of these have numbers which cannot be easily changed. The '.bridgeDA' driver is number
31, but it can be renumbered as required. Two other drivers, the Corvus '.PTD', number
23, and the Corvus 'OmniDriver', number 30, are installed at the time OmniTalk is
initialized. If slots 23 and 30 are not open, installation at boot time will fail, resulting in the
message "Cannot install Alternate AppleTalk, using built-in AppleTalk instead."

	1990 BARB - Cornell Work Product - Community Acces.pdf
	1990 BARB - Cornell Work Product - Community Acces1.pdf

		607-277-5808
	2014-08-07T10:51:02-0400
	Blayk Heights - 1668 Trumansburg Rd., Ithaca, NY 14850
	Bonze Anne Rose Blayk
	Signing 1990 - BARB - Cornell Work Product

